Characterization of a novel nanobiomaterial fabricated from HA, TiO2 and Al2O3 powders: an in vitro study
نویسندگان
چکیده
For the purposes of this study, hydroxyapatite (HA)-Al2O3-TiO2 nanobiomaterial with significant surface properties and biocompatibility capable of forming surface apatite was fabricated by cold-press and sintering method. Samples were examined for hardness and porosity. The results showed that in terms of hardness and porosity, sample A (50 wt% TiO2-30 wt% HA-20 wt% Al2O3) was superior to sample B (30 wt% TiO2-50 wt% HA-20 wt% Al2O3), and also the density of nanobiomaterial was close to natural bone density. Bioactivity of the samples in a simulated body fluid (SBF) was investigated. Then, after immersing the samples in SBF solution for a period of 7 days, sample B exhibited greater ability to form calcium phosphate compounds on the surface as compared to sample A. In addition, in vitro studies showed that MG-67 osteoblast-like cells attached and spread on the samples surface. The results showed that cells proliferated in greater numbers on the sample B as compared to the sample A. Finally, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis were performed to identify phases, study microstructure, and determine percentage of elements, respectively. The results revealed that considering their different properties, both nanobiomaterials can be used in medical applications.
منابع مشابه
Synthesis of TiC-Al2O3 Nanocomposite from Impure TiO2 by Mechanical Activated Sintering
In this research, the production possibility of TiC-Al2O3 nanocomposite, as a useful ceramic from commercially pure TiO2, aluminum powder and carbon black has been investigated. Routile (TiO2) with carbon black and aluminum were placed in a high energy ball mill and sampled during different milling times. Then, the activated powders were synthesized at different temperatures in an atmosphere co...
متن کاملPreparation and characterization of hydroxyapatite reinforced with hardystonite as a novel bio-nanocomposite for tissue engineering
Objecttive(s): Despite the poor mechanical properties of hydroxyapatite, its unique biological properties leads we think about study on improving its properties rather than completely replacing it with other biomaterials. Accordingly, in this study we introduced hydroxyapatite reinforced with hardystonite as a novel bio-nanocompositeand evaluate its in-vitro bioactivity with the aim of developi...
متن کاملAZ31/HA-Zeolite Nano Crystalline Biocomposite Fabricated by Mechanical Alloying and Powder Metallurgy: Mechanical Properties
Magnesium and its alloys are light, biodegradable, biocompatible metals that have promising applications as biomaterials. Magnesium is potentially useful for orthopedic and cardiovascular applications. However, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. One of the ways to improve the corrosion rate is to compose it’s with cer...
متن کاملUltrasonic–Assisted Co–Precipitation Method of Preparation of Nanocomposites in The Al2O3–TiO2–ZrO2 System: Characterization and Microsturcture
Recently, the Al2O3–TiO2–ZrO2 system has found valuable applications, particularly, as a support for NOx storage–reduction (NSR) catalysts. Nanocomposite powders were prepared from the co-precipitation method in inorganic precursors. The behaviors of mixed oxide nanoparticles under ultrasonic irradiation, such as dispersion, and crushing were studied. Phase transformations, crystallite size, an...
متن کاملPREPARATION OF NANO-STRUCTURAL Al2O3-TiB2 IN-SITU COMPOSITE USING MECHANICALLY ACTIVATED COMBUSTION SYNTHESIS FOLLOWED BYINTENSIVE MILLING
Abstract: Nano-structural synthesized materials can be fabricated utilizing intensive milling after combustion synthesis. The Al2O3-TiB2 ceramic composite has been synthesized by aluminothermic reactions between Al, Ti (TiO2), and B (B2O3 or H3BO3). Boric acid (H3BO3) is less expensive than boron oxide, and after being dehydrated at 200°C, boron oxide will be obtained. In this study, Al, TiO2, ...
متن کامل